Inactivation and Disinfection of Poliovirus Type 1 on Nonporous Carriers

ABSTRACT

The inactivation of poliovirus type 1 (PV-1) deposited on glass carriers in the presence of low vs. high organic loads was investigated using two micellized aldehyde-based disinfectants and sodium hypochlorite. Inactivation at 21 °C of PV-1 deposited on glass carriers in the presence of low organic load was rapid (within 1 minute) and complete (≥3log10) for Microbide-S (100,000ppm), Microbide-G (30,000ppm) and sodium hypochlorite (30,000ppm). Disinfectant concentrations less than 10,000ppm resulted in incomplete inactivation of PV-1 at up to 5 minutes contact time at this low level of organic load. In the presence of high organic load, the three disinfectants also displayed rapid (within 1 minute) and complete (≥3-4 log10) inactivation of PV-1 when applied at concentrations >10,000ppm. The efficacies of the three disinfectants for inactivating PV-1 on glass carriers were therefore found to be similar at one-minute contact time, regardless of the presence of low vs. high organic load, although the time kinetics of inactivation deviated rapidly from linearity in the case of PV-1 in the presence of high organic load. This is thought to reflect binding of active agents to the organic load or protection of virus by the organic load. The impact of this can be mitigated by applying a high concentration of disinfectant (>10,000ppm). The results indicate that Microbide-S and Microbide-G display efficacies comparable to sodium hypochlorite for inactivation of PV-1 deposited on non-porous surfaces in the presence of low or high organic load and can be used as successful anti-viral disinfectants. 

Previous
Previous

Microbide presents the case for reducing hospital-acquired infections in India.

Next
Next

Inactivation and Disinfection of Porcine Parvovirus on a Nonporous Surface